C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name: Linear Electronics

Subject Code: 4TE03LNE1

Branch: B.Tech (CE)

Semester: 3 Date:5/12/2015 Time:2:30 To 5:30 Marks :70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) Why are the h parameters preferred to analyze a circuit using BJT?
- **b**) Why is a hybrid model of transistor preferred over other models?
- c) What is the use of class C amplifiers?
- d) Why is a power amplifier called large signal amplifier?
- e) What are the practical applications of emitter follower?
- f) What is the effect of negative feedback on bandwidth of an amplifier?
- **g**) What will be the output shape of an op-amp differentiator with sinusoidal and square wave input?
- **h**) What will be the output shape of an op-amp integrator with sinusoidal and square wave input?
- i) What are the applications of op-amp integrators?
- j) Why is an emitter follower called so?
- **k**) What are the different types of feedback?
- 1) What do you understand by feedback in an amplifier?
- m) Why do we use transformer in the output stage of power amplifier?
- n) Give the differences between voltage and power amplifiers.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- (14)
- (a) Draw the h-parameter equivalent circuit of Common Emitter Amplifier circuit and derive the expression for input impedance, output impedance, voltage gain and current gain.
- (b) Show that maximum collector efficiency of class A transformer coupled power amplifier is 50%.

Q-3		Attempt all questions	(14)
	(a)	Explain with a diagram, the working of a transformer coupled class AB power amplifier.	
	(b)	Derive an expression for the voltage gain of a Non-Inverting Op-Amp.	
Q-4		Attempt all questions	(14)
	(a)	Explain the working of Class B transformer coupled push-pull amplifier and derive the expression for its efficiency.	
	(b)	Derive an expression for the voltage gain of an Inverting Op-Amp.	
Q-5		Attempt all questions	(14)
	(a)	Draw the block schematic of an op-amp and explain the function of each stage.	
	(b)	Deduce the Barkausen Criterion for the generation of sustained oscillations. How are the oscillations initiated?	
Q-6		Attempt all questions	(14)
	(a)	With neat circuit diagram, explain RC phase shift oscillator.	
	(b)	Draw and explain Voltage Series Feedback amplifier.	
Q-7		Attempt all questions	(14)
	(a)	Draw and explain Current Shunt Feedback amplifier.	
	(b)	Write short note on Hartley's Oscillator.	
Q-8		Attempt all questions	(14)
	(a)	Explain with the help of circuit diagram the working of Colpitts Oscillator.	. ,
	(b)	Explain how can an op-amp be configured as an adder. Obtain the output	

expression.

Page 2 || 2

